Monday, November 23, 2015

p. 616: 13, 14, 15, 17, 19, 23, 25, 26, 27

Problem 13

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$.

Solution. Compare this series to $\sum_{n=1}^{\infty} \frac{1}{n}$ because, for large $n, n^2 + 1 \approx n^2$, so $\frac{n}{n^2 + 1} \approx \frac{n}{n^2} = \frac{1}{n}$. $\lim_{n \to \infty} \frac{\frac{n}{n^2 + 1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1}$ = 1.

We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Therefore, $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$ diverges.

Problem 14

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{5}{4^n + 1}$.

Solution. This resembles 5 times the geometric series $\sum_{n=1}^{\infty} \frac{1}{4^n}$.

$$\lim_{n \to \infty} \frac{\frac{5}{4^n + 1}}{\frac{1}{4^n}} = \lim_{n \to \infty} \frac{5 \cdot 4^n}{4^n + 1}$$
$$= \lim_{n \to \infty} \frac{5}{1 + \frac{1}{4^n}}$$
$$= 5.$$

We know that $\sum_{n=1}^{\infty} \frac{1}{4^n}$ converges (geometric, $r = \frac{1}{4}$). Therefore, $\sum_{n=1}^{\infty} \frac{5}{4^n + 1}$ converges.

Problem 15

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$.

Solution. Because $\sqrt{n^2 + 1} \approx n$, we will compare this series to $\sum_{n=1}^{\infty} \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt{n^2 + 1}}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}}$$
$$= \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}}$$
$$= 1.$$

We know that
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges. Therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ diverges.

Problem 17

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2n^2 - 1}{3n^5 + 2n + 1}$.

Solution. For large $n, 2n^2 - 1 \approx 2n^2$ and $3n^5 + 2n + 1 \approx 3n^5$. Therefore, $\frac{2n^2 - 1}{3n^5 + 2n + 1} \approx \frac{2n^2}{3n^5} = \frac{2}{3n^3}$. We will compare the series to $\sum_{n=1}^{\infty} \frac{1}{n^3}$. $\lim_{n \to \infty} \frac{\frac{2n^2 - 1}{3n^5 + 2n + 1}}{\frac{1}{\sqrt{3}}} = \lim_{n \to \infty} \frac{2n^5 - n^3}{3n^5 + 2n + 1}$ $= \lim_{n \to \infty} \frac{2 - \frac{1}{n^2}}{3 + \frac{2}{n^4} + \frac{1}{n^5}}$ 2

We know that $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges. Therefore, $\sum_{n=1}^{\infty} \frac{2n^2 - 1}{3n^5 + 2n + 1}$ converges.

 $=\frac{2}{2}.$

Problem 19

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$. Solution. Because $\sqrt{n^2+1} \approx n$, it follows that $n\sqrt{n^2+1} \approx n^2$. So we will compare the series to $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{\frac{1}{n\sqrt{n^2+1}}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n\sqrt{n^2+1}}$$
$$= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+1}}$$
$$= \lim_{n \to \infty} \frac{1}{\sqrt{1+\frac{1}{n^2}}}$$
$$= 1.$$

We know that
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$ converges.

Problem 23

Problem. Test $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n}$ for convergence or divergence. Identify which test was used. Solution. Note that $\frac{\sqrt[3]{n}}{n} = \frac{1}{n^{2/3}}$. Therefore, this is a *p*-series with $p = \frac{2}{3} < 1$. Therefore, the series diverges.

Problem 25

Problem. Test $\sum_{n=1}^{\infty} \frac{1}{5^n + 1}$ for convergence or divergence. Identify which test was used. Solution. Each term $\frac{1}{5^n + 1}$ is slightly smaller than $\frac{1}{5^n}$ and $\sum_{n=1}^{\infty} \frac{1}{5^n}$ is a convergent geometric series. Use the Direct Comparison Test or the Limit Comparison Test.

$$\frac{1}{5^n + 1} < \frac{1}{5^n}$$
$$5^n < 5^n + 1$$
$$0 < 1.$$

The steps are logically reversible, so we conclude that $\sum_{n=1}^{\infty} \frac{1}{5^n + 1}$ converges.

Problem 26

Problem. Test $\sum_{n=1}^{\infty} \frac{1}{n^3 - 8}$ for convergence or divergence. Identify which test was used. Solution. For large $n, n^3 - 8 \approx n^3$, but the Direct Comparison Test will fail because, although $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges, the terms $\frac{1}{n^3 - 8}$ are larger than the terms $\frac{1}{n^3}$. Instead, use the Limit Comparison Test.

$$\lim_{n \to \infty} \frac{\frac{1}{n^3 - 8}}{\frac{1}{n^3}} = \lim_{n \to \infty} \frac{n^3}{n^3 - 8}$$
$$= \lim_{n \to \infty} \frac{1}{1 - \frac{8}{n^3}}$$
$$= 1.$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^3 - 8}$ converges.

Problem 27

Problem. Test $\sum_{n=1}^{\infty} \frac{2n}{3n-2}$ for convergence or divergence. Identify which test was used.

Solution. For large n, each term $\frac{2n}{3n-2}$ is approximately $\frac{2}{3}$. Use the Divergence Test.

$$\lim_{n \to \infty} \frac{2n}{3n-2} = \lim_{n \to \infty} \frac{2}{3-\frac{2}{n}}$$
$$= \frac{2}{3}$$
$$\neq 0.$$

Therefore, the series $\sum_{n=1}^{\infty} \frac{2n}{3n-2}$ diverges.