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Problem 13

Problem. Use the Limit Comparison Test to determine the convergence or divergence

of the series Z
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We know that — diverges. Therefore, diverges.

Problem 14

Problem. Use the Limit Comparison Test to determine the convergence or divergence
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Solution. This resembles 5 times the geometric series Z TR
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We know that — converges (geometric, r = 1). Therefore, converges.



Problem 15

Problem. Use the Limit Comparison Test to determine the convergence or divergence
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Solution. Because vn? 4+ 1 ~ n, we will compare this series to Z —.
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diverges.
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We know that — diverges. Therefore, —_—

Problem 17

Problem. Use the Limit Comparison Test to determine the convergence or divergence
|

of the series _—
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Solution. For large n, 2n?—1 ~ 2n? and 3n°+2n+1 ~ 3n®. Therefore, T el
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Problem 19
Problem. Use the Limit Comparison Test to determine the convergence or divergence
1
of the series
Z T

Solution. Because vn? + 1 =~ n, it follows that nv/n? +1 ~ n% So we will compare
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the series to Z 2
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We know that Z — converges. Therefore, Z

converges.
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Problem 23

3
Problem. Test Z
n
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Solution. Note that = Therefore, this is a p-series with p = £ < 1.
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Therefore, the series diverges.

Problem 25

Problem. Test Z E 7 for convergence or divergence. Identify which test was used.
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Solution. Each term ] is slightly smaller than = and Z: o is a convergent



geometric series. Use the Direct Comparison Test or the Limit Comparison Test.
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The steps are logically reversible, so we conclude that Z converges.
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Problem 26

Problem. Test Z
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Solution. For large n, n® — 8 ~ n?, but the Direct Comparison Test will fail because,

5 for convergence or divergence. Identify which test was used.
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We know that Z — converges. Therefore, Z
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converges.
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Problem 27

for convergence or divergence. Identify which test was used.
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Theref th i
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diverges.



