Monday, November 23, 2015

p. 616: $13,14,15,17,19,23,25,26,27$

Problem 13

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$.
Solution. Compare this series to $\sum_{n=1}^{\infty} \frac{1}{n}$ because, for large $n, n^{2}+1 \approx n^{2}$, so $\frac{n}{n^{2}+1} \approx \frac{n}{n^{2}}=\frac{1}{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n}{n^{2}+1}}{\frac{1}{n}} & =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1} \\
& =1 .
\end{aligned}
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Therefore, $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ diverges.

Problem 14

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{5}{4^{n}+1}$.
Solution. This resembles 5 times the geometric series $\sum_{n=1}^{\infty} \frac{1}{4^{n}}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{5}{4^{n}+1}}{\frac{1}{4^{n}}} & =\lim _{n \rightarrow \infty} \frac{5 \cdot 4^{n}}{4^{n}+1} \\
& =\lim _{n \rightarrow \infty} \frac{5}{1+\frac{1}{4^{n}}} \\
& =5
\end{aligned}
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{4^{n}}$ converges (geometric, $r=\frac{1}{4}$). Therefore, $\sum_{n=1}^{\infty} \frac{5}{4^{n}+1}$ converges.

Problem 15

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$.
Solution. Because $\sqrt{n^{2}+1} \approx n$, we will compare this series to $\sum_{n=1}^{\infty} \frac{1}{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{2}+1}}}{\frac{1}{n}} & =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n^{2}}}} \\
& =1
\end{aligned}
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$ diverges.

Problem 17

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{3 n^{5}+2 n+1}$.
Solution. For large $n, 2 n^{2}-1 \approx 2 n^{2}$ and $3 n^{5}+2 n+1 \approx 3 n^{5}$. Therefore, $\frac{2 n^{2}-1}{3 n^{5}+2 n+1} \approx \frac{2 n^{2}}{3 n^{5}}=\frac{2}{3 n^{3}}$.
We will compare the series to $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{2 n^{2}-1}{3 n^{5}+2 n+1}}{\frac{1}{n^{3}}} & =\lim _{n \rightarrow \infty} \frac{2 n^{5}-n^{3}}{3 n^{5}+2 n+1} \\
& =\lim _{n \rightarrow \infty} \frac{2-\frac{1}{n^{2}}}{3+\frac{2}{n^{4}}+\frac{1}{n^{5}}} \\
& =\frac{2}{3} .
\end{aligned}
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges. Therefore, $\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{3 n^{5}+2 n+1}$ converges.

Problem 19

Problem. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n^{2}+1}}$.
Solution. Because $\sqrt{n^{2}+1} \approx n$, it follows that $n \sqrt{n^{2}+1} \approx n^{2}$. So we will compare the series to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{1}{n \sqrt{n^{2}+1}}}{\frac{1}{n^{2}}} & =\lim _{n \rightarrow \infty} \frac{n^{2}}{n \sqrt{n^{2}+1}} \\
& =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n^{2}}}} \\
& =1 .
\end{aligned}
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n^{2}+1}}$ converges.

Problem 23

Problem. Test $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n}$ for convergence or divergence. Identify which test was used.
Solution. Note that $\frac{\sqrt[3]{n}}{n}=\frac{1}{n^{2 / 3}}$. Therefore, this is a p-series with $p=\frac{2}{3}<1$. Therefore, the series diverges.

Problem 25

Problem. Test $\sum_{n=1}^{\infty} \frac{1}{5^{n}+1}$ for convergence or divergence. Identify which test was used.
Solution. Each term $\frac{1}{5^{n}+1}$ is slightly smaller than $\frac{1}{5^{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{5^{n}}$ is a convergent
geometric series. Use the Direct Comparison Test or the Limit Comparison Test.

$$
\begin{aligned}
\frac{1}{5^{n}+1} & <\frac{1}{5^{n}} \\
5^{n} & <5^{n}+1 \\
0 & <1 .
\end{aligned}
$$

The steps are logically reversible, so we conclude that $\sum_{n=1}^{\infty} \frac{1}{5^{n}+1}$ converges.

Problem 26

Problem. Test $\sum_{n=1}^{\infty} \frac{1}{n^{3}-8}$ for convergence or divergence. Identify which test was used.
Solution. For large $n, n^{3}-8 \approx n^{3}$, but the Direct Comparison Test will fail because, although $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges, the terms $\frac{1}{n^{3}-8}$ are larger than the terms $\frac{1}{n^{3}}$. Instead, use the Limit Comparison Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}-8}}{\frac{1}{n^{3}}} & =\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}-8} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1-\frac{8}{n^{3}}} \\
& =1 .
\end{aligned}
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{3}-8}$ converges.

Problem 27

Problem. Test $\sum_{n=1}^{\infty} \frac{2 n}{3 n-2}$ for convergence or divergence. Identify which test was used.
Solution. For large n, each term $\frac{2 n}{3 n-2}$ is approximately $\frac{2}{3}$. Use the Divergence Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2 n}{3 n-2} & =\lim _{n \rightarrow \infty} \frac{2}{3-\frac{2}{n}} \\
& =\frac{2}{3} \\
& \neq 0
\end{aligned}
$$

Therefore, the series $\sum_{n=1}^{\infty} \frac{2 n}{3 n-2}$ diverges.

